THERMODYNAMIC THEORY FOR SIMPLE AND COMPLEX DISSIPATIVE STRUCTURES

Pallavi Rastogi, Shripad P. Mahulikar

Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India

ABSTRACT

Dissipative structures (DS) are at all scales, systems, and at different levels of complexity; but have a common base in nonequilibrium thermodynamics. This conceptual study integrates simple and complex DS by addressing existence of growing or decaying DS from entropy-based analysis (considering mass energy-exchange by DS with surroundings). Two entropy-based dimensionless ratios are introduced that explain negentropy debt payment and existence of DS with growth / decay:

I. Dimensionless ratio of release-flow to in-flow entropy rates of growing and decaying DS is, $\Pi_{S,rel/in} = \left[\frac{\dot{s}_{rel,tot}(t)}{\dot{s}_{in,tot}(t)}\right]$ (> 1, from

 2^{nd} Law); hence, ($\Pi_{S,rel/in}-1$) is a measure of, "excess negentropy-debt paid" due to DS-existence. Difference between release-flow and in-flow entropy rates is the entropy rise rate of the surroundings ($\dot{S}_{sur-DS} > 0$, from 2^{nd} Law), which is the excess "*negentropy-debt*" paid to surroundings due to DS-existence. Negentropy-debt is paid by: (*i*) growing DS using mass-energy content of its surroundings (it is needed for DS growth and is beneficial for DS-existence); (*ii*) decaying DS using part of its own mass-energy content in release-flows (it is counter-productive to DS, as it hastens approach to DS perish).

II. Entropy change rate of DS can vary due to, change in its disorder-level, $\dot{S}_{DS,org}$, and accumulation of mass-energy content in DS, $\dot{S}_{DS,acc}$. Entropy-based dimensionless ratio, $\Pi_{DS,acc/org}$ (= $\dot{S}_{DS,acc}/\dot{S}_{DS,org}$), determines growth (sustained / unsustained) and decay (gradual / rapid), of DS. Growing complex DS pay lesser negentropy debt due to involvement in several other activities that are enabled by their complexity, leading to, $\dot{S}_{DS,org} > 0$. Mediation is one of the main factors augmenting complexity, but it is needed for survival that is linked with mortality of complex DS; hence, complex DS can enter decay-phase also due to increase in their $\dot{S}_{DS,org}$. Therefore, disorder of complex DS increases and their growth can be un-sustained, leading to entry in decay-phase, in spite of availability of adequate mass-energy in-flows. Reduction in complexity or proper management of complexity can enable increase in both $\Pi_{S,rel/in}$ and $\Pi_{DS,acc/org}$ (in the direction of ideal growth, $\dot{S}_{DS,org} = 0$). Prolonged existence of DS is either in the sustained growth or gradual decay phase, as other two phases (un-sustained growth, rapid decay) are relatively much shorter.

As part of future research scope, above claims can be taken forward to study entropy production (\dot{S}_{gen}) by DS collectively, for comparing global \dot{S}_{gen} with individual \dot{S}_{gen} when operating in group.

Keywords: complexity, dissipative structure, entropy-energy ratio, negentropy debt