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THE ROLE OF THERMODYNAMICS IN THE CONTROL OF NETWORKED SYSTEMS
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ABSTRACT
Network systems involve distributed decision-making for co-

ordination of networks of dynamic agents and address a broad
area of applications in science and engineering. In this paper,
we develop a thermodynamically-based framework for address-
ing consensus problems using a hybrid control protocol architec-
ture with a dynamic communication topology wherein communi-
cation events are triggered via state-dependent resettings consis-
tent with thermodynamic principles. The proposed hybrid con-
troller architecture involves the exchange of intermittent state in-
formation between agents guaranteeing that the closed-loop dy-
namical network is semistable to an equipartitioned equilibrium
representing a state of information consensus consistent with ba-
sic thermodynamic principles.

1 INTRODUCTION
The consensus control problem involves information ex-

change between multiagent networked systems guaranteeing
agreement between agents for achieving a given coordination
task. Given that this problem addresses a broad area of appli-
cations that includes cooperative control of unmanned air vehi-
cles, microsatellite clusters, mobile robotics, battle space man-
agement, and congestion control in communication networks, it
is not surprising that control of networks and control over net-
works has attracted considerable attention in the literature [1–3].
Consensus control protocols over static and dynamic information
exchange topologies involve neighbor-to-neighbor interactions,
wherein agents update their information state based on the infor-
mation states of the neighboring agents, and have predominately
relied on algebraic graph theory [2, 3].

In [4–6], the authors present an alternative new and novel
perspective to the consensus control problem that is based on
dynamical thermodynamics [7, 8]; a framework that unifies the
foundational disciplines of thermodynamics and dynamical sys-
tems theory. Dynamical thermodynamics was developed in [7,8]
to provide a rigorous foundation for equilibrium and nonequi-
librium thermodynamics using a dynamical systems formalism.
Dynamical thermodynamics has also been used to apply thermo-
dynamic principles to the analysis and control design of dynami-
cal systems using an energy- and entropy-based hybrid stabiliza-

tion framework [9–11].
By generalizing the notions of temperature, energy, and en-

tropy, dynamical thermodynamics is used in [4–6] to develop a
design procedure for distributed consensus controllers that en-
gender networked dynamical systems to emulate thermodynamic
behavior. In particular, for network systems with an undirected
and directed communication graph topology, system thermody-
namic notions are used to show that every control law protocol
of a symmetric Fourier type, with information transfer playing
the role of energy flow, achieves information (or communication)
consensus [4–6].

In this paper, we develop a hybrid control framework for
semistability and consensus of multiagent systems with inter-
mittent information. Specifically, we use impulsive differential
equations [9] to construct a hybrid control architecture for ad-
dressing network information consensus wherein communica-
tion events are triggered via state-dependent resettings. The pro-
posed controller architecture is predicated on the recently devel-
oped notion of hybrid dynamical thermodynamics [8, 12] result-
ing in a hybrid controller architecture involving the exchange of
generalized energy state information between agents that guar-
antee that the closed-loop dynamical network is semistable and
consistent with basic thermodynamic principles. Specifically, the
hybrid control protocol architecture involves a dynamic commu-
nication topology wherein communication events are triggered
via state-dependent resettings inspired by thermodynamic phase
transition driving parameters from condensed matter physics
[12]. Due to space limitations we omit all proofs in the paper;
the detailed proofs of all the results appear in [13].

2 A HYBRID THERMODYNAMIC CONSENSUS CON-
TROL ARCHITECTURE
To present the key ideas for developing a thermodynamic-

based hybrid control architecture for information consensus con-
sider the hybrid dynamical system G

ẋ(t) = fc(x(t)), x(0) = x0, x(t) 6∈Z , (1)

∆x(t) = fd(x(t)), x(t) ∈Z , (2)
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where, for every t ≥ 0, x(t) ∈ D ⊆ Rn, D is an open set with
0 ∈ D , ∆x(t) 4= x(t+)− x(t), where x(t+) , x(t) + fd(x(t)) =
limε→0+ x(t + ε), fc : D → Rn is Lipschitz continuous and sat-
isfies fc(0) = 0, fd : D → Rn is continuous, and Z ⊂ D is the
resetting set. Note that xe ∈D is an equilibrium point of (1) and
(2) if and only if fc(xe) = 0 and fd(xe) = 0. We refer to the differ-
ential equation (1) as the continuous-time dynamics, and we refer
to the difference equation (2) as the resetting law. For a discus-
sion on solutions to impulsive differential equations, see [9].

Next, we develop a thermodynamically motivated infor-
mation consensus framework for multiagent nonlinear systems
to achieve semistability and state equipartition. The consen-
sus problem we consider involves a dynamic communication
graph with intermittent information over the dynamical network
characterized by the multiagent impulsive dynamical systems Gi
given by

ẋi(t) = uci(t), xi(0) = xi0, xi(t) 6∈Zi, (3)

∆xi(t) = udi(t), xi(t) ∈Zi, i = 1, . . . ,q, (4)

where, for every t ≥ 0, xi(t) ∈ R denotes the information state
and uci(t) and udi(t)∈R, respectively, denote the continuous and
discrete information control inputs associated with the local re-
setting set Zi ⊂ R, i ∈ {1, . . . ,q}.

The hybrid consensus protocol is given by

uci(t) =
q

∑
j=1,i6= j

φci j(xi(t),x j(t)), (5)

udi(t) =
q

∑
j=1,i6= j

φdi j(xi(t),x j(t)), (6)

where, for all i, j = 1, . . . ,q, i 6= j, φci j(·, ·) is locally Lipschitz
continuous, φdi j(·, ·) is continuous, φci j(xi,x j) = −φc ji(x j,xi),
and φdi j(xi,x j) =−φd ji(x j,xi). In this case, the closed-loop sys-
tem (3)–(6) is given by

ẋi(t) =
q

∑
j=1,i6= j

φci j(xi(t),x j(t)), xi(0) = xi0, (7)

xi(t) 6∈Zi, i = 1, . . . ,q,

∆xi(t) =
q

∑
j=1,i6= j

φdi j(xi(t),x j(t)), xi(t) ∈Zi, (8)

or, equivalently, in vector form given by (1) and (2), where x(t),
[x1(t), . . . ,xq(t)]T ∈ Rq, fc(x(t)) , [ fc1(x(t)), . . . , fcq(x(t))]

T ∈
Rq, fd(x(t)) , [ fd1(x(t)), . . . , fdq(x(t))]

T ∈ Rq, and Z ,
∪q

i=1{x ∈ Rq : xi ∈Zi}, with, for i, j = 1, . . . ,q,

fci(x(t)) =
q

∑
j=1,i6= j

φci j(xi(t),x j(t)), (9)

fdi(x(t)) =
q

∑
j=1,i6= j

φdi j(xi(t),x j(t)). (10)

Note that G given by (1) and (2) describe an interconnected
network where information states are updated using a distributed
hybrid controller involving neighbor-to-neighbor interaction be-
tween agents. Furthermore, this hybrid control protocol involves
a design procedure for consensus with intermittent transmis-
sion of information as defined by the local resetting sets Zi,
i ∈ {1, . . . ,q}.

In order to define the global resetting set Z in terms of the
local resetting sets Zi, i = 1, . . . ,q, associated with G , we require
some additional notation. Let Oi denote the set of all agents with
information flowing out to the ith agent and let Ii denote the set
of all agents receiving information from the ith agent. We define
the local resetting sets Zi by

Zi
4
=

{
xi ∈ R : ∑

j∈Oi

φci j(xi,x j)(xi− x j)

− ∑
j∈Ii

φci j(xi,x j)(xi− x j) = 0,

and xi 6= x j, j ∈ Oi∪Ii

}
, i = 1, . . . ,q, (11)

with Z
4
=
⋃q

i=1 {x ∈ Rq : xi ∈Zi}. The resetting set (11) is pro-
posed in [12] and, as noted in Remark 2.1, is consistent with
thermodynamic principles.

To ensure a thermodynamically consistent information flow
model, we make the following assumptions on the information
flow functions φci j(·, ·), i, j = 1, . . . ,q, between state resettings:

Assumption 2.1. The connectivity matrix C ∈ Rq×q associ-
ated with the hybrid multiagent dynamical system G given by (1)
and (2) is defined by

C(i, j) =

{
0, if φci j(xi(t),x j(t))≡ 0,
1, otherwise, i 6= j,

i, j = 1, . . . ,q, t ≥ 0, (12)

C(i,i) =−
q

∑
k=1,k 6=i

C(k,i), i = j, i = 1, . . . ,q, (13)

with rank C = q−1, and for C(i, j) = 1, i 6= j, φci j(xi(t),x j(t))= 0
if and only if xi(t) = x j(t) for all x(t) 6∈Z , t ≥ 0.

Assumption 2.2. For i, j = 1, . . . ,q, i 6= j, [xi(t) − x j(t)]
·φci j(xi(t),x j(t))≤ 0, x(t) 6∈Z , t ≥ 0.

Furthermore, across resettings the information difference
must satisfy the following assumption:

Assumption 2.3. For i, j = 1, . . . ,q, [xi(tk+1) − x j(tk+1)]
·[xi(tk)− x j(tk)]≥ 0 for all xi(tk) 6= x j(tk), x(tk) ∈Z , k ∈ Z+.

The condition φci j(xi(t),x j(t)) = 0 if and only if xi(t) =
x j(t), i 6= j, for all x(t) 6∈ Z implies that agents Gi and G j
are connected, and hence, can share information; alternatively
φci j(xi(t),x j(t)) ≡ 0 implies that agents Gi and G j are discon-
nected, and hence, cannot share information.
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Assumption 2.1 implies that if the energies or information in
the connected agents Gi and G j are equal, then energy or informa-
tion exchange between these agents is not possible. This state-
ment is reminiscent of the zeroth law of thermodynamics, which
postulates that temperature equality is a necessary and sufficient
condition for thermal equilibrium. Furthermore, if C = C T and
rank C = q− 1, then it follows that the connectivity matrix C
is irreducible, which implies that for any pair of agents Gi and
G j, i 6= j, of G there exists a sequence of information connectors
(information arcs) of G that connect agents Gi and G j.

Assumption 2.2 implies that energy or information flows
from more energetic or information rich agents to less energetic
or information poor agents and is reminiscent of the second law
of thermodynamics, which states that heat (i.e., energy in transi-
tion) must flow in the direction of lower temperatures. Finally,
Assumption 2.3 implies that for any pair of connected agents Gi
and G j, i 6= j, the energy or information difference between con-
secutive jumps is monotonic.

The following definition for semistability is needed for the
main result of the paper. Recall that for addressing the stability of
an impulsive dynamical system the usual stability definitions are
valid [9]. For the statement of the next definition and theorem,
Bδ (x) denotes the open ball centered at x with radius δ and e
∈ Rq denotes the ones vector of order q, that is, e = [1, . . . ,q]T.

Definition 2.1. An equilibrium solution x(t) ≡ xe ∈ Rn to (1)
and (2) is semistable if it is Lyapunov stable and there exists
δ > 0 such that if x0 ∈Bδ (xe), then limt→∞ x(t) exists and cor-
responds to a Lyapunov stable equilibrium point.

Theorem 2.1. Consider the closed-loop hybrid multiagent dy-
namical system G given by (1) and (2) with resetting set Z
given by (11), and assume Assumptions 2.1, 2.2, and 2.3 hold.
Then, for every α ≥ 0, αe is a semistable equilibrium state of
G . Furthermore, x(t)→ 1

q eeTx(0) as t → ∞ and 1
q eeTx(0) is a

semistable equilibrium state.

Next, we provide explicit connections of the proposed
thermodynamic-based consensus control architecture with the re-
cently developed notion of hybrid thermodynamics [12].

Definition 2.2. For the distributed hybrid consensus control
protocol G given by (1) and (2), a function S : Rq → R sat-
isfying

S (x(T ))≥ S (x(t1)), t1 ≤ tk < T, k ∈ Z+, (14)

is called an entropy function of G .

The next result gives necessary and sufficient conditions for
establishing the existence of a hybrid entropy function of G over
an interval t ∈ (tk, tk+1] involving the consecutive resetting times
tk and tk+1, k ∈ Z+.

Theorem 2.2. Consider the closed-loop hybrid multiagent dy-
namical system G given by (1) and (2), and assume Assumptions
2.1, 2.2, and 2.3 hold. Then a function S : Rq→R is an entropy
function of G if and only if

S (x(t̂))≥S (x(t)), tk < t ≤ t̂ ≤ tk+1, (15)

S (x(t+k ))≥S (x(tk)), k ∈ Z+. (16)

The next theorem establishes the existence of a continuously
differentiable entropy function for the closed-loop hybrid multi-
agent dynamical system G given by (1) and (2).

Theorem 2.3. Consider the closed-loop hybrid multiagent dy-
namical system G given by (1) and (2), and assume Assumptions
2.2 and 2.3 hold. Then the function S : Rq→ R given by

S (x) = eTloge(ce+ x)−q loge c, (17)

where loge(ce+x) denotes the vector natural logarithm given by
[loge(c+ x1), . . . , loge(c+ xq)]

T and c > ‖x‖∞, is a continuously
differentiable entropy function of G . In addition,

Ṡ (x(t))≥ 0, x(t) 6∈Z , tk < t < tk+1, (18)

∆S (x(tk))≥ 0, x(tk) ∈Z , k ∈ Z+. (19)

Remark 2.1. It follows from the proof of Theorem 2.3 that (11)
implies that if the time rate of change of the difference in the
input information flow and output information flow between any
pair of connected agent entropies is zero and consensus is not
reached, then a resetting occurs. For details, see [13].

It follows from Theorems 2.2 and 2.3 that the entropy func-
tion (17) satisfies (14) as an equality for an equilibrium (equipar-
titioned) process and as a strict inequality for a nonequilibrium
(nonequipartitioned) process. The entropy expression given by
(17) is identical in form to the Boltzmann entropy for statistical
thermodynamics [8]. In addition, S (x) given by (17) achieves
a maximum when all the information states xi, i = 1, . . . ,q, are
equal [7, 8]. Inequality (14) is a generalization of Clausius’ in-
equality for equilibrium and nonequilibrium thermodynamics as
well as reversible and irreversible thermodynamics as applied to
adiabatically isolated hybrid thermodynamic systems involving
discontinuous phase transitions. For details, see [12].

3 ILLUSTRATIVE NUMERICAL EXAMPLE
In this section, we demonstrate the proposed distributed hy-

brid consensus framework on a set of aircraft achieving pitch rate
consensus. Specifically, consider the multiagent system com-
prised of the controlled longitudinal motion of seven Boeing 747
airplanes linearized at an altitude of 40 kft and a velocity of 774
ft/sec given by

żi(t) = Azi(t)+Bδi(t), zi(0) = zi0 , i = 1, . . . ,7, (20)

where zi(t) = [vxi(t),vzi(t),qi(t),θei(t)]
T ∈ R4, is state vector of

aircraft with vxi(t), t ≥ 0, representing the x–body–axis compo-
nent of the velocity of the airplane center of mass with respect
to the reference axes (in ft/sec), vzi(t), t ≥ 0, representing the
z–body–axis component of the velocity of the airplane center of
mass with respect to the reference axes (in ft/sec), qi(t), t ≥ 0,
representing the y–body–axis component of the angular velocity
of the airplane (pitch rate) with respect to the reference axes (in
crad/sec), θei(t), t ≥ 0, representing the pitch Euler angle of the
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FIGURE 1. Aircraft communication topology.

airplane body axes with respect to the reference axes (in crad),
δ (t), t ≥ 0, representing the elevator control input (in crad), and
A and B are the plant and control matrices [13].

We propose a two-level control hierarchy composed of a
lower-level controller for command following and a higher-level
hybrid consensus controller for pitch rate consensus with a com-
munication topology as shown in Figure 1. To address the
lower-level controller design, let xi(t), i = 1, . . . ,7, t ≥ 0, de-
note an information command generated by (7) and (8) (i.e.,
the guidance command) and let si(t), i = 1, . . . ,7, t ≥ 0, denote
the integrator state satisfying ṡi(t) = Ezi(t)− xi(t), i = 1, . . . ,7,
where E = [0,0,1,0]. Now, defining the augmented state ẑi(t),
[zT

i (t),si(t)]T ∈ R5, we obtain

˙̂zi(t) =
[

A 0
E 0

]
ẑi(t)+

[
B
0

]
δi(t)+

[
0
−1

]
xi(t), ẑi(0) = ẑi0 .

Furthermore, let the elevator control input be given by δi(t) =
−Kẑi(t), i = 1, . . . ,7, which is designed based on an optimal
linear-quadratic regulator.

For the higher-level hybrid consensus controller design,
we use (7) with functions φci j(xi(t),x j(t)) = (x j(t)− xi(t))

1
3 ,

i, j ∈ {1, . . . ,7}, i 6= j, and (8) with φdi j(xi(t),x j(t)) = (x j(t)−
xi(t))/3, i, j ∈ {1, . . . ,7}, i 6= j, to generate the information state
x(t), t ≥ 0, that has a direct effect on the lower-level controller
design to achieve pitch rate consensus. Here, we used the re-
setting set Zi given by (11). Figure 2 shows the information
command signals and pitch rate of each aircraft versus time for
the proposed hybrid thermodynamic control protocol.

4 CONCLUSION
In this paper, we presented a thermodynamically-based

framework for addressing consensus problems for hybrid mul-
tiagent dynamical systems with bidirectional communication be-
tween agents in the network. Specifically, hybrid nonlinear net-
work protocols were designed that guarantee convergence to
Lyapunov stable equilibria. Our analysis relies on several tools
from algebraic graph theory, semistability, impulsive differential
equations, and hybrid dynamical thermodynamics [8,12]. Future
research will explore extending the proposed framework to in-
clude directed communication topologies as well as developing
hybrid information consensus algorithms for achieving coordi-
nation tasks in finite time.
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